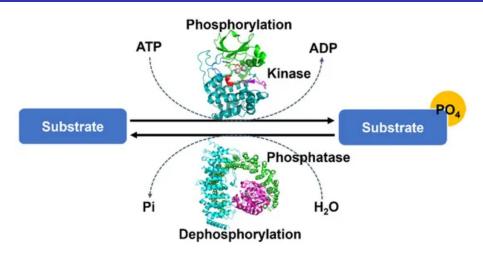
Using the Tarski-Seidenberg Algorithm to compute the discriminant of a linear section of a positive toric variety


Alexandru Iosif
Saint Louis University – Madrid Campus
(Visitante en la Universidad Autónoma de Madrid)

3 de junio de 2022 Jíbiri Seminar IV – Zaragoza 2022

Parte I

Motivación del problema

Motivación desde la biología

(Fuente: Seok, S.-H. Structural Insights into Protein Regulation by Phosphorylation and Substrate Recognition of Protein Kinases/Phosphatases. Life 2021, 11, 957)

Motivación desde la biología

M. PÉREZ MILLÁN AND A. DICKENSTEIN

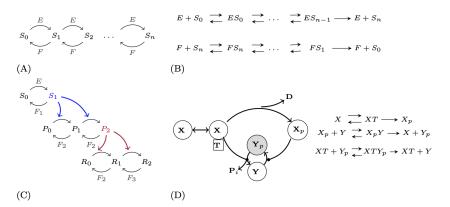


FIGURE 1. Examples of MESSI systems: Sequential n-site phosphorylation/dephosphorlation (A) distributive case [36, 51], (B) processive case [5, 31]; (C) Phosphorylation cascade; (D) Schematic diagram of an EnvZ-OmpR bacterial model [44].

Multiestacionariedad

- Dinámica de una red de acción-masa: $\dot{x}_i = P_i(\mathbf{k}, \mathbf{x}) \in \mathbb{Q}(\mathbf{k})[\mathbf{x}], i \in [n].$
- A menudo estos sistemas tienen leyes lineales de conservación.
- Estados estacionarios: contienen pistas sobre diferentes modi operandi.
- En particular, nos interesa la multiestacionariedad.

Pregunta

¿Cómo depende el número de estados estacionarios de los parámetros?

Observación

Mientras las redes bioquímicas suelen tener un gran número de párametros, también tienen propiedades algebraicas y combinatoriales especiales. En particular, muchas de ellas son **tóricas**.

5 / 19

Experimento (Grigoriev, I., Rahkooy, Sturm, Weber; 2020)

Para 129 modelos con parámetros numericamente fijos, escogidos de la base de datos ODEbase, se obtuvo la siguiente classificación:

Sobre \mathbb{C}

- Para 22 de ellos, $\mathbb{V}^*(P)$ es el coset de un grupo multiplicativo.
- Para 52 de ellos, $\mathbb{V}^*(P) = \emptyset$ y $\langle P \rangle$ tiene una base de Gröbner formada solo por binomios y monomios.
- Para 25 de ellos los cálculos no terminaron después de 6 horas.

Sobre $\mathbb R$

- Para 20 de ellos, $\mathbb{V}^*(P)$ es el coset de un grupo multiplicativo.
- Para 53 de ellos, $\mathbb{V}^*(P) = \emptyset$.
- Para 35 de ellos los cálculos no terminaron después de 6 horas.

Detectar la multiestacionariedad: caso general

- k_1, \ldots, k_r : constantes de velocidad (parámetros)
- c_1, \ldots, c_s : cantidades conservación (parámetros)
- x_1, \ldots, x_n : concentraciones (variables)
- Normalmente r >> s.

Detectar la multiestacionariedad es un problema (2n + r + s)-dimensional: $\exists \mathbf{x}, \mathbf{y} \in \mathbb{R}^n_{>0}, \exists \mathbf{k} \in \mathbb{R}^r_{>0}, \exists \mathbf{c} \in \mathbb{R}^s_{>0}$, tales que:

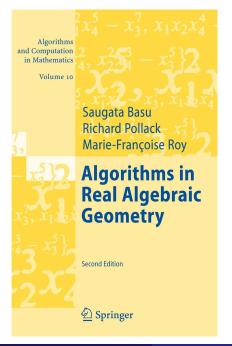
- $\mathbf{x} \neq \mathbf{y}$,
- $P_1(\mathbf{k}, \mathbf{x}) = P_1(\mathbf{k}, \mathbf{y}) = 0, \dots, P_{n-s}(\mathbf{k}, \mathbf{x}) = P_{n-s}(\mathbf{k}, \mathbf{y}) = 0,$
- $L_1(\mathbf{c}, \mathbf{x}) = L_1(\mathbf{c}, \mathbf{y}) = 0, \dots, L_s(\mathbf{c}, \mathbf{x}) = L_s(\mathbf{c}, \mathbf{y}) = 0.$

Detectar la multiestacionariedad: caso tórico positivo

Definición (informal)

Un sistema es tórico positivo si para casi todo $\mathbf{k} \in \mathbb{R}^r_{>0}$, tenemos que

$$\mathbb{V}(P(\mathbf{k}, \mathbf{x})) \cap \mathbb{R}^n_{>0} = \operatorname{im} \left(\begin{array}{ccc} \mathbb{R}^d_{>0} & \to & \mathbb{R}^n_{>0} \\ \xi & \mapsto & \psi(\mathbf{k}) \star \xi^A \end{array} \right)$$


donde \star es la multiplicación coordenada a coordenada, ξ^A es un vector de monomios y d < n.

Teorema (Conradi, I., Kahle; 2019)

En el caso tórico, detectar la multiestacionariedad es un problema (n+d-1)-dimensional

Parte II

Discriminantes de Sturm

JACEK BOCHNAK MICHEL COSTE MARIE-FRANÇOISE ROY

Volume 36

Ergebnisse der Mathematik und ihrer Grenzgebiete 3. Folge

A Series of Modern Surveys in Mathematics

Real Algebraic Geometry

Pleanteamiento del problema

Lo que tenemos: un sistema de ecuaciones

- m parámetros positivos $k_1, k_2, \ldots, c_1, c_2, \ldots$
- n variables x_1, \ldots, x_n .
- Una familia de sistemas binomiales^a: $B_i(\mathbf{k}, \mathbf{x}) = 0$, $i \in [n s]$.
- Una familia de sistemas lineales: $L_j(\mathbf{c}, \mathbf{x}) = 0$, $j \in [s]$.

Lo que queremos: una variedad discriminante

• Una variedad semialgebraica $\Delta \subseteq \mathbb{R}^m_{\geq 0}$ que separe el espacio de los parámetros en componentes conexas correspondientes a igual número de soluciones positivas del sistema

$$\{B_i(\mathbf{k}, \mathbf{x}) = 0, L_i(\mathbf{c}, \mathbf{x}) = 0 \mid i \in [n - s], j \in [s]\}.$$

^aEn realidad podemos ser menos restrictivos: pueden ser familias tóricas positivas.

• Puesto que $B_i(\mathbf{k}, \mathbf{x}) = 0$, $i \in [n - s]$, son binomios, tenemos que:

$$\mathbb{V}(B(\mathbf{k},\mathbf{x})) \cap \mathbb{R}^n_{>0} = \operatorname{im} \left(\begin{array}{ccc} \phi : \mathbb{R}^d_{>0} & \to & \mathbb{R}^n_{>0} \\ \xi & \mapsto & \psi(\mathbf{k}) \star \xi^A \end{array} \right)$$

donde \star es la multiplicación coordenada a coordenada, ξ^A es un vector de monomios y d < n.

• Para cada $j \in [d]$, considérese el siguiente ideal:

$$I_j := \langle L(\mathbf{c}, \phi(\mathbf{k})\xi^A) \rangle \cap \mathbb{Q}(\mathbf{k})[\xi_j]$$

• Condición: existe p_j que genera I_j

Tarski y Seidenberg nos saludan

Sea s_j la secuencia de Sturm de p_j y calcúlese el producto $\Delta_S(p_j)$ de los numeradores y denomidadores de los coeficientes principales y de los términos constantes no nulos de los elementos de s_j .

Definición

El discriminante de Sturm del sistema $\{B(\mathbf{k}, \mathbf{x}) = 0, L(\mathbf{c}, \mathbf{x}) = 0\}$ es

$$\Delta_{\mathcal{S}}(I) := \prod_{j=1}^{n} \Delta_{\mathcal{S}}(p_j).$$

Teorema (Corolario Tarski-Seidenberg [1930-1948])

El discriminante de Sturm separa el espacio de parámetros en regiones con igual número de raíces positivas.

Parte III

Implementaciones y cálculos

```
sturmdiscriminants / SturmDiscriminants.m2
     -- -*- coding: utf-8 -*-
 3
         "SturmDiscriminants".
 4
         Version => "0.1".
5
         Date => "October 2018",
6 □
         Authors \Rightarrow {{
7
               Name => "Alexandru Iosif",
8
               Email => "alexandru.iosif@ovgu.de",
 9
               HomePage => "https://alexandru-iosif.github.io"}},
10
             Headline => "Computation of Sturm Discriminants",
11 ⊟
         AuxiliaryFiles => false.
12
             PackageImports => {"Elimination"}.
13
         DebuggingMode => false
14
15
16 ⊟
    export {
17
          -- 'Official' functions
          "SturmDiscriminant".
18
19
          "SturmSequence"
```

Maple

17

```
maplesturmdiscriminants / SturmDisciminants.mpl
     #####
     with(PolynomialIdeals):
     with(Groebner):
 3
     with(Student[MultivariateCalculus]):
 4
     with(Student[LinearAlgebra]):
     with(combinat):
 8
     #####
 9
     SturmDiscriminants := module()
10
     description "Sturm Discriminants";
11
     #Author: Alexandru Iosif
12
     option package;
13
14
15
     #####
16
     export SturmSequence, SturmDiscriminant, MonomialExponent, areAlgebraicallyIndependent, GenericPolynomial;
```

El discriminante de la phosphorylación dual de una proteina

$$A + E_1 \xleftarrow{k_1} AE_1 \xrightarrow{k_3} A_p + E_1 \xleftarrow{k_4} A_pE_1 \xrightarrow{k_6} A_{pp} + E_1$$

$$A_{pp} + E_2 \xleftarrow{k_7} A_{pp}E_2 \xrightarrow{k_9} A_p + E_2 \xleftarrow{k_{10}} A_pE_2 \xrightarrow{k_{12}} A + E_2$$

Que yo sepa, esta es la primera vez que se calcula un discriminante completo de este sistema: https://bitbucket.org/alexandru-iosif/maplesturmdiscriminants/src/master/Discriminant2sites.txt

Trabajo para el futuro

- Hacerle una buena limpieza al discriminante que he calculado.
- Analizar las células del discriminante e intentar clasificarlas en función del número de raíces positivas.
- ¿Hacer más cálculos?
- Escribir el artículo (por ahora solamente está, parcialmente, en mi tesis.)

¡Muchas Gracias! Vă Mulțumesc!