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Summary

The subject of this project is Algebraic Systems Biology with focus on detecting multistationarity in mass-action networks. The main contributions
of this work can be divided into three parts. First, we develop the theory of multistationarity for mass-action networks whose positive steady states
admit a monomial parameterization and we apply this theory to the well-known sequential and distributive phosphorylation networks. Second, we
prove that mass-action networks with the isolation property have toric positive steady states. Finally, we introduce a new discriminant, the Sturm
discriminant, which is suitable for the study of parametric families of polynomial systems with positive roots.

Mass-action networks

• The Theory of Chemical Reaction Networks started to develop early
in the 1970s (mainly by Feinberg, Horn, Jackson, and collaborators).

• One of the main application of this theory is Systems Biology.

Example. The following is the 2-site phosphorylation:
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Assumption: The dynamics is encoded in the network.

Mass-action hypothesis: Usually it is assumed that the speed of a
reaction is directly proportional to the concentration of reactants.

• The dynamics of a mass-action network is given by ODEs with
polynomial right hand side: ẋi = Pi(k, x) ∈ R[k][x], i ∈ [n].

• Often these dynamical systems have linear conservation laws.

Example: For the 2-site phosphorylation let x1 denote the concen-
tration of A, x2 of E1, etc. There are three conserved quantities:

x2 + x3 + x5 = c1, x7 + x8 + x9 = c2,

x1 + x3 + x4 + x5 + x6 + x8 + x9 = c3.

Relation to Complexity Reduction

• Often one does not try to solve these dynamical systems, but
rather pick a more modest objective. For example, equilibria contain
information about long-term behaviour and different modi operandi.

• In particular, one is frequently interested in the existence of multiple
equilibria (multistationarity).

Problem: Decide whether there exist values of the conserved
quantities that enable multiple positive equilibria.

• While in general this can be a hard problem, biochemical networks
have special combinatorial properties. For example, in 2017 Millán et
al. proved that many biochemical networks have toric equilibria.

• From a computational and mathematical point of view, toric equilib-
ria are interesting, as they admit monomial parameterizations.

Dynamical systems with positive toric steady states

Theorem (Conradi, I., Kahle)
In the space of conserved quantities of a system with positive toric
steady states the multistationarity locus is a cone missing the origin.

Theorem (Bihan, Dickenstein, Giaroli; Conradi, I., Kahle)
Generically, in the space of conserved quantities c1, c2, and c3 of the
2-site phosphorylation multistationarity is possible if and only if

c2 < c3 or c1 < c3.

Idea of the proof : The “if” part was proved by Bihan et al. The “only
if” part was proved in Mathematica; previous to computations, a di-
mension reduction was done by means of monomial parameterizations.

Dynamical systems with the isolation property

• The pair {i, j}, i < j, is called a doubling set whenever
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• Doubling sets induce a clustering of the reactions.

Definition (local version of: 2011; Conradi and Flockerzi)
For a fixed k, a system has the isolation property if coordinates of the
nonnegative kernel of the stoichiometric matrix indexed by different
clusters have disjoint supports.

Theorem (Conradi, I., Kahle)
The positive equilibria of a system with the isolation property are toric.

Sturm discriminants

• Biochemical networks are often large and measurement data is noisy.
Hence this data can be encoded in a set of parameters. Discriminants
offer a way to classify the parameters with respect to some property.

Definition Let R = R[t1, . . . , tm], K = R(t1, . . . , tm), and p ∈ R[x].
The Sturm discriminant ∆S(p) of p ∈ R[x] is the polynomial obtained
by multiplying the numerators and denominators of the leading
coefficients and nonzero constant terms of elements of s(p). Con-
nected components of Rm\V(∆S(p)) are called cells of the discriminant.

Theorem (I.)
For a ∈ Rm, let pa denote the specialization of p to t = a. If p(0) 6= 0
and a and b are contained in a common cell of V(∆S(p)), then pa and
pb have the same number of distinct positive roots.
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