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Problem 1
or describing the stationary points
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Consider a polynomial ODE system
ẋ1 = P1(k1, . . . , kr ; x1, . . . , xn),
...

ẋn = Pn(k1, . . . , kr ; x1, . . . , xn),

where k1, . . . , kr ∈ R>0 are parameters, x1 ≥ 0, . . ., xn ≥ 0, and

P1, . . . ,Pn ∈ R(k1, . . . , kr )[x1, . . . , xn]

are polynomials in x1, . . . , xn and rational functions in k1, . . . , kr .

Example {
ẋ = k1x

2 − k2
k3
y

ẏ = −k1xy + k2
k3
y7
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Problem 1

Find the steady state variety, that is, solve the polynomial system
ẋ1 = . . . = ẋn = 0 for complex/real x1, . . . , xn.

Problem 1’

Find the largest K ⊂ Rr
>0 such that, whenever (k1, . . . , kr ) ∈ K, the poly-

nomial system ẋ1 = . . . = ẋn = 0 has non-negative solutions x1, . . . , xn.

Problem 1”

Add to Problem 1/1’ restrictions derived from conservation laws of the
Polynomial ODE system.
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Solution to Problem 1

Compute a (comprehensive) Gröbner basis for the ideal

⟨P1, . . . ,Pn⟩ ⊂ R(k1, . . . , kr )[x1, . . . , xn].

Then restrict solutions to Rn
>0.

Example of Problem 1

ẋ = x2 − y2

ẏ = −x2 + y2
Note: I := ⟨x2 − y2,−x2 + y2⟩ = ⟨x2 − y2⟩
Then a Gröbner basis of I is {x2 − y2}.

V(x2 − y2) = V(x − y) ∪ V(x + y) V(x2 − y2) ∩ R2
>0 V(x2 − y2) ∩ R2

>0 = V(x − y)
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Solution to Problem 1’

Quantifier elimination for
∃x1, . . . xn ∈ R such that
P1 = 0, . . . ,Pn = 0, k1 > 0, . . . , kr > 0, x1 ≥ 0, . . . , xn ≥ 0.

Example of Problem 1’

ẋ = ax2 + bx + c
ẏ = −ax2 − bx − c

Then the quantified statement
∃x , y ∈ R such that :
ax2 + bx + c = 0 ∧ −ax2 − bx − c = 0
∧a > 0 ∧ b > 0 ∧ c > 0
∧x ≥ 0 ∧ y ≥ 0

is equivalent to quantifier free statement
a > 0 ∧ b > 0 ∧ c > 0 ∧ b2 − 4ac ≥ 0 ∧ ac ≤ 0

which is equivalent to the easier quantifier free formula
a, b, c ∈ ∅.
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Solution to Problem 1”

1.∗ Every conservation law ϕ(k, x) = c of the previous ODE system derives
from a syzygy g of the vector (P1, . . . ,Pn), where ∇× g = 0 and ∇ϕ = g.
2. For linear conservation laws just use linear algebra.

Example of Problem 1”: Linear conservation law

ẋ = x − y
ẏ = −x + y

A Gröbner basis of I is {x − y}.
Conservation Law: ẋ + ẏ = 0 =⇒ x + y = c .

V(x − y)

∗Desoeuvres, Iosif, Lüders, Radulescu, Rahkooy, Seiß, Sturm. A Computational
Approach to Complete Exact and Approximate Conservation Laws of Chemical Reaction
Networks (2023). ArXiv:2212.14881
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Example of Problem 1”: Non-linear conservation law

Consider the folowing ODE system:
ẋ = xy − y2

ẏ = −x2 + xy

We have the relation 2xẋ + 2y ẏ = 0, obtained from the syzygy
2x(xy − y2) + 2y(−x2 + xy) = 0. Since ∂y2x = ∂x2y , there is a ϕ such
that ∇(x , y) = ϕ:

ϕ = x2 + y2.

Hence we get the conservation law
x2 + y2 = constant.
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Problem 2
or the Multistationarity Problem
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Problem 2

1. Classify all (or some) of the parameters k1, . . . , kr and the conservered
quantities c1, . . . , cs with respecto to the existence of multiple steady states.
2. Often we are only interested in strictly positive solutions.

Example of Problem 2

Consider the following ODE system

ẋ = (x2 + y2 − 2)(x − y)
ẏ = −ẋ

It has the conservation law x + y = c . If c < 2 there are three steady
states. If c ≥ 2 there is only one steady state.
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Dynamical systems with
(positive) toric steady states
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Dynamical systems with (positive) toric steady states

Consider a polynomial ODE system

ẋ1 = P1(k1, . . . , kr ; x1, . . . , xn),
...
ẋn = Pn(k1, . . . , kr ; x1, . . . , xn),

where k1, . . . , kr ∈ R>0 are parameters, x1 ≥ 0, . . ., xn ≥ 0, and

P1, . . . ,Pn ∈ R(k1, . . . , kr )[x1, . . . , xn]

are polynomials in x1, . . . , xn and rational functions in k1, . . . , kr .

Definition (informal)

The dynamical system defined above has:
1. toric steady states if the ideal I := ⟨P1, . . . ,Pn⟩ is binomial.
2. positive toric steady states if the variety V(I ) ∩ Rn

>0 is binomial.
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Example: Toric system

Dynamics:
ẋ1 = x31 + x21x2 − x1x

2
2 − x32 + x21 − x22

= (x1 − x2)(x1 + x2)(x1 + x2 + 1)
ẋ2 = −ẋ1

Positive steady states, V+:
x1
x2

= 1, x1, x2 > 0

Monomial parameterization of V+:

im

(
R>0 → R2

>0

t 7→ (t, t)

)
x1

x2
V(x1 − x2)V(x1 + x2)

V(x1 + x2 + 1)
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Example: Non toric system

Dynamics:
ẋ1 = x31 + x21x2 − x1x

2
2 − x32 + 2x21 +

2x1x2 + x1 + x2 =
(x1 − x2 + 1)(x1 + x2)(x1 + x2 + 1)

ẋ2 = −ẋ1

Positive steady states, V+:
x1 = x2 − 1, x1, x2 > 0

NONMonomial parameterization of
V+:

im

(
[1,∞) → R2

>0

t 7→ (t − 1, t)

)
x1

x2
V(x1 − x2 + 1)V(x1 + x2)

V(x1 + x2 + 1)

álex iósif Toric steady states 13 / 29



Theorem (Corollary to Eisenbud, Sturmfels; 1996)

If I is a binomial ideal, then, for generic k, V(I ) is a finite union of cosets of
the same multiplicative group.

Why binomials? (Mathematical answer)

1. Binomials are special but trinomials are not: every ecuation systems can
be expressed as a systems of trinomials (by introducing new variables).
2. Yet, look at the following theorem.

Theorem (Savageau, Voit; 1987)

Consider the following dynamical system
ẋi = fi (x1, . . . , xn), xi (0) = xi0, i ∈ [n],

where each fi is a finite composition of elementary functions. Then there is
a smooth change of variables such that this system can be expressed as

ẏi = αi

m∏
j=1

y
aij
j − βi

m∏
j=1

y
bij
j , yi ≥ 0, yi (0) = yi0, i ∈ [m],

where αi , βi ∈ R≥0, aij , bij ∈ R and there are m − n relations among yi .
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MESSI biological systems (Millán, Dickenstein; 2016)

(Taken from Millán and Dickenstein, 2016.)
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Experiment (Grigoriev, I., Rahkooy, Sturm, Weber; 2019)

For 129 models with fixed parameters, chosen from the database BioModels,
the following classification arises:

Over C
For 22 of them, V ∗ is the coset of a multiplicative group.

For 52 of them, V ∗ = ∅ and ⟨P⟩ has a binomial/monomial Gröbner
basis.

For 25 of them computations did not finish after 6 hours.

Over R
For 20 of them, V ∗ is the coset of a multiplicative group.

For 53 of them, V ∗ = ∅.
For 35 of them computations did not finish after 6 hours.

Here V ∗ = {x ∈ (K∗)n|P = 0} and K∗ is the multiplicative group of K.
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Dimension of the multistationarity problem

If n and r denote the number of variables and parameters, respectively, then
detecting multistationarity can be a 2n + r dimensional problem.

Lemma (Conradi, I., Kahle; 2018)

In the toric case detecting multistationarity is an n+ q dimensional problem,
where q < n denotes the dimension of the corresponding torus.

Theorem (Conradi, I., Kahle; 2018)

In the toric case multistationarity is a scale invariant in the space of linear
conserved quantities.

Corollary

In the toric case detecting multistationarity is an n + q − 1 dimensional
problem. Moreover, restricting the values of the linear conserved quantities
does not increase the dimension of this problem.
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Monomial parameterizations of the positive steady states

Lemma (Conradi, I., Kahle; 2018)

If V+ is toric, then there are A ∈ Q(n−p)×n of rank n − p with AM = 0, a
function ψ : K+

γ → Rn, and an exponent η ∈ Z>0, such that ψη is a
rational function and the following are equivalent:
a) (k, x) ∈ V+,
b) k ∈ K+

γ and there exist ξ ∈ Rn−p
>0 such that x = ψ(k) ⋆ ξA, where ⋆

denotes the coordinate-wise product.

Definition

The matrix A from the previous lemma is called the exponent matrix of
the monomial parameterization.
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Multistationarity in the space of total concentrations

Theorem (Conradi, I., Kahle; 2018)

Assume V+ is toric with exponent matrix A ∈ Q(n−p)×n, let
g1, . . . , gl ∈ R[c], □ ∈ {>,≥}l , and F(g(c) □ 0) be any logical
combination of the inequalities g(c) □ 0. Then there are k ∈ K+

γ such that
there is multistationarity in the region defined by F(g(c) □ 0) if and only if

there are a ∈ Rn
>0 and ξ ∈ R(n−p)

>0 \ {1} such that

Z (aξA − a) = 0 and F(g(Za) □ 0).
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Example: the 2-site phosphorylation

The following network is the sequential distributive 2-site phosphorylation:

S + K SK Sp + K SpK Spp + K

Spp + P SppP Sp + P SpP S + P

k1 k3

k2

k4 k6

k5

k7 k9

k8

k10 k12

k11

[Source: Seok, S.-H. Structural Insights into Protein Regulation by Phosphorylation and Substrate Recognition of Protein

Kinases/Phosphatases. Life 2021, 11, 957]
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Example: the 2-site phosphorylation

Dynamics:

˙[S ] = −k1[S ][K ] + k2[SK ] + k12[SpP]

˙[K ] = −k1[S ][K ] + (k2 + k3)[SK ]− k4[K ][Sp] + (k5 + k6)[SpK ]

˙[SK ] = k1[S ][K ]− (k2 + k3)[SK ]

˙[Sp] = k3[SK ]− k4[K ][Sp] + k5[SpK ] + k9[SppP]− k10[Sp][P] + k11[SpP]

˙[SpK ] = k4[K ][Sp]− (k5 + k6)[SpK ]

˙[Spp] = k6[SpK ]− k7[Spp][P] + k8[SppP]

˙[P] = −k7[Spp][P] + (k8 + k9)[SppP]− k10[Sp][P] + (k11 + k12)[SpP]

˙[SppP] = k7[Spp][P]− (k8 + k9)[SppP]

˙[SpP] = k10[Sp][P]− (k11 + k12)[SpP].
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Example: the 2-site phosphorylation

Conservation laws:

[K ] + [SK ] + [SpK ] = Ktot,

[SppP] + [SpP] + [P] = Ptot,

[S ] + [Sp] + [Spp] + [SK ] + [SpK ] + [SppP] + [SpP] = Stot.
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Example: the 2-site phosphorylation

The positive steady state variety V+ admits a monomial parameterization:

[S ] =
(k2 + k3)k4k6(k11 + k12)k12

k1k3(k5 + k6)k9k10

ξ21
ξ2ξ3

[K ] =
(k5 + k6)k9k10
k4k6(k11 + k12)

ξ2ξ3
ξ1

[SK ] =
k12
k3
ξ1

[Sp] =
k11 + k12

k10

ξ1
ξ3

[SpK ] =
k9
k6
ξ2

[Spp] =
k8 + k9

k7

ξ2
ξ3

[P] = ξ3

[SppP] = ξ2

[SpP] = ξ1

where ξ1, ξ2, ξ3 ∈ R>0.
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Example: the 2-site phosphorylation

Theorem (Bihan, Dickenstein, Giaroli; Conradi, I., Kahle; 2018)

Generically, in the space of linear conserved quantities Ktot, Ptot, and Stot,
multistationarity is possible if and only if

Ptot < Stot or Ktot < Stot.

Stot

Ktot Ptot

álex iósif Toric steady states 24 / 29



Example: the 2-site phosphorylation

Theorem (Bihan, Dickenstein, Giaroli; Conradi, I., Kahle; 2018)

Generically, in the space of linear conserved quantities Ktot, Ptot, and Stot,
multistationarity is possible if and only if

Ptot < Stot or Ktot < Stot.

Ktot Ptot

Stot

Ω(1)

Ω(2)Ω(3)
Ω(4)

Ω(5)
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What about the n-site phosphorylation?

Theorem (Bihan, Dickenstein, Giaroli; 2018)

In the space of linear conserved quantities Ktot, Ptot, and Stot,
multistationarity is possible if

Ptot < Stot or Ktot < Stot.

Stot

Ktot Ptot
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Sufficient conditions for toricity

Proposition (Corollary to Eisenbud, Sturmfels; 1994)

Let I ⊆ R[x1, . . . , xn] be a binomial ideal. Then the variety VR(I ) ∩ Rn
>0 is

empty or toric.

Corollary

If {ẋi = Pi |i ∈ [n]} has binomial ideal ⟨P1, . . . ,Pn⟩ ⊆ R[x1, . . . , xn] and at
least a positive steady state, then V+ is toric

Problem

Find other certificates for the toricty of VR(I ) ∩ Rn
>0.

One posible answer (not discussed in this talk):

Theorem (Conradi, I., Kahle; 2019)

Isolation property =⇒ VR(I ) ∩ Rn
>0 is toric.
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Using the Tarski-Seidenberg Algorithm to compute
the discriminant of a linear section of a positive toric

variety



The statement of the problem

What we have: a system of equations

m positive parameters k1, k2, . . . , c1, c2, . . ..

n variables x1, . . . , xn.

A family of binomial systems a: Bi (k, x) = 0, i ∈ [n − s].

A family of linear systems: Lj(c, x) = 0, j ∈ [s].

aActually they only need be positive toric

What we want: a discriminant variety

A semialgebraic variety ∆ ⊆ Rm
≥0 which separates the space of

parameters in conected components corresponding to equal number of
positive solutions of the system
{Bi (k, x) = 0, Lj(c, x) = 0 | i ∈ [n − s], j ∈ [s]}.



Since Bi (k, x) = 0, i ∈ [n − s], are binomials, we have that:

V (B(k, x)) ∩ Rn
>0 = im

(
ϕ : Rd

>0 → Rn
>0

ξ 7→ ψ(k) ⋆ ξA

)
where ⋆ is the coordinate-wise product, ξA is vector of monomials and
d < n.

For each j ∈ [d ], consider the ideal:

Ij := ⟨L(c, ϕ(k)ξA)⟩ ∩Q(k)[ξj ]

Condition: exists pj a generator of Ij



Tarski and Seidenberg come into action

Let sj be the Sturm sequence of pj and compute the product ∆S(pj) of
numerators and denominators of the principal coefficients and nonzero
constant terms of each element of sj .

Definition

The Sturm discrimiant of the system {B(k, x) = 0, L(c, x) = 0} is

∆S(I ) :=
n∏

j=1

∆S(pj).

Theorem (Corollary to Tarski-Seidenberg [1930,1948])

The Sturm discriminant separates the space of parameters in regions with
equal number of positive roots.



Macaulay2



Maple



The discriminant of the dual site phosphorylation

A+ E1 AE1 Ap + E1 ApE1 App + E1

App + E2 AppE2 Ap + E2 ApE2 A+ E2

k1 k3

k2

k4 k6

k5

k7 k9

k8

k10 k12

k11

I believe that this is the first time someone succeds in computing the
discriminant of this syatem:
https://bitbucket.org/alexandru-iosif/

maplesturmdiscriminants/src/master/Discriminant2sites.txt

https://bitbucket.org/alexandru-iosif/maplesturmdiscriminants/src/master/Discriminant2sites.txt
https://bitbucket.org/alexandru-iosif/maplesturmdiscriminants/src/master/Discriminant2sites.txt

	General problem

