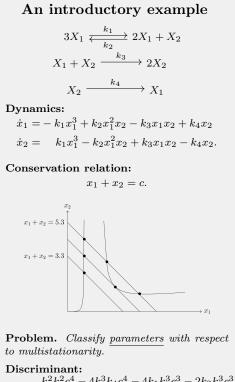
Multistationarity in the space of total concentrations for systems that admit a monomial parametrization

Carsten Conradi¹, <u>Alexandru Iosif²</u>, and Thomas Kahle³

¹HTW Berlin, ²JRC-COMBINE Aachen, ³OvGU Magdeburg



 $\begin{array}{c} k_{2}^{2}k_{3}^{2}c^{4} - 4k_{2}^{3}k_{4}c^{4} - 4k_{1}k_{3}^{3}c^{3} - 2k_{2}k_{3}^{3}c^{3} \\ + 18k_{1}k_{2}k_{3}k_{4}c^{3} + 8k_{2}^{2}k_{3}k_{4}c^{3} + k_{3}^{4}c^{2} + 6k_{1}k_{3}^{2}k_{4}c^{2} \\ - 2k_{2}k_{3}^{2}k_{4}c^{2} - 27k_{1}^{2}k_{4}^{2}c^{2} - 36k_{1}k_{2}k_{4}^{2}c^{2} - 8k_{2}^{2}k_{4}^{2}c^{2} \\ - 2k_{3}^{3}k_{4}c + 6k_{1}k_{3}k_{4}^{2}c + 8k_{2}k_{3}k_{4}^{2}c + k_{3}^{2}k_{4}^{2} - 4k_{1}k_{4}^{3} \\ - 4k_{2}k_{4}^{3} = 0 \end{array}$

 \bullet For the 2-site phosphorylation multistationarity is possible if and only if the concentration of the substrate is larger than either the concentration of the kinase or of the phosphatase. (Theorem 1)

• FOR TORIC SYSTEMS MULTISTATIONARITY IS SCALE INVARIANT IN THE SPACE OF TOTAL CONCENTRATIONS. (Theorem 2)

Phosphorylations

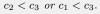
$$\begin{array}{c} A+K \xleftarrow{k_1}{\longleftarrow} AK \xrightarrow{k_3} A_p + K \xleftarrow{k_4}{\longleftarrow} A_p K \xrightarrow{k_6} A_{pp} + K \\ A_{pp}+P \xleftarrow{k_7}{\longleftarrow} A_{pp}P \xrightarrow{k_9} A_p + P \xleftarrow{k_{10}}{\longleftarrow} A_pP \xrightarrow{k_{12}} A + P \end{array}$$

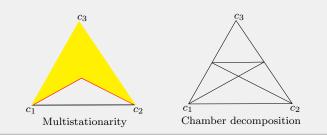
Conservation relations:

$$[K] + [AK] + [A_pK] = c_1, \quad [P] + [A_pP] + [A_{pp}P] = c_2,$$

$$A] + [A_p] + [A_{pp}] + [AK] + [A_pK] + [A_pP] + [A_{pp}P] = c_3.$$

Theorem 1 (Bihan, Dickenstein, Giaroli; Conradi, I., Kahle) Generically, in the space of total concentrations c_1 , c_2 , and c_3 of the previous network multistationarity is possible if and only if





Multistationarity in the space of total concentrations

• Total concentrations are experimentally more accessible than rate constants.

Problem. Classify <u>total concentrations</u> with respect to multistationarity.

• RATE CONSTANTS ARE EASY TO ELIMINATE FOR (POSITIVE) TORIC SYSTEMS.

Systems with positive toric steady states

Definition. Dynamical systems with positive toric steady states are systems whose positive equilibria are parametrized by monomials.

Example. Take the following network:

$$X_1 \xleftarrow{k_1}{k_2} X_2$$

As $I = \langle k_1 x_1 - k_2 x_2 \rangle$, for $k \in \mathbb{R}^2_{>0}$, we get

$$\mathbb{V}(I) \cap \mathbb{R}^2_{>0} = \operatorname{im} \left(\begin{array}{cc} \mathbb{R}_{>0} & \to & \mathbb{R}^2_{>0} \\ t & \mapsto & (t, \frac{k_1}{k_2} t) \end{array} \right)$$

Theorem 2 (Conradi, I., Kahle). In the space of total concentrations of a system with positive toric steady states the multistationarity locus is a cone with the origin removed.

Publications and References

- Alexandru Iosif. Algebraic Methods for the Study of Multistationarity in Mass-Action Networks. PhD thesis, Otto-von-Guericke-Universität Magdeburg, 2019.
- [2] Carsten Conradi, Alexandru Iosif, and Thomas Kahle. Multistationarity in the space of total concentrations for systems that admit a monomial parametrization. To appear in Bulletin of Mathematical Biology.
- [3] Frédéric Bihan, Alicia Dickenstein, and Magalí Giaroli. Lower bounds for positive roots and regions of multistationarity in chemical reaction networks. preprint, arXiv:1807.05157, 2018.
- [4] Mercedes Pérez Millán and Alicia Dickenstein. The structure of MESSI biological systems. SIAM Journal on Applied Dynamical Systems, 17(2):1650-1682, 2018.

Acknowledgement This project is funded by the DFG, 284057449 and by the DFG-RTG "Math-Core", 314838170. It was part of the PhD project of Alexandru Iosif. Alexandru Iosif has now a full postdoctoral position at the *Joint Research Center for Computational Biomedicine Aachen*.