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An introductory example
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Dynamics:
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Conservation relation:

x1 + x2 = c.

Problem. Classify parameters with respect
to multistationarity.
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•For the 2−site phosphorylation multistationar-
ity is possible if and only if the concentration
of the substrate is larger than either the con-
centration of the kinase or of the phosphatase.
(Theorem 1)

• For toric systems multistationarity is scale
invariant in the space of total concentrations.
(Theorem 2)
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Conservation relations:

[K] + [AK] + [ApK] = c1, [P ] + [ApP ] + [AppP ] = c2,

[A] + [Ap] + [App] + [AK] + [ApK] + [ApP ] + [AppP ] = c3.

Theorem 1 (Bihan, Dickenstein, Giaroli; Conradi, I., Kahle)
Generically, in the space of total concentrations c1, c2, and c3 of the
previous network multistationarity is possible if and only if

c2 < c3 or c1 < c3.
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Chamber decomposition

Multistationarity in the space
of total concentrations

• Total concentrations are experimentally
more accessible than rate constants.

Problem. Classify total concentrations
with respect to multistationarity.

• Rate constants are easy to eliminate
for (positive) toric systems.

Systems with
positive toric steady states

Definition. Dynamical systems with positive
toric steady states are systems whose positive
equilibria are parametrized by monomials.

Example. Take the following network:
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As I = 〈k1x1 − k2x2〉, for k ∈ R2
>0, we get

V(I) ∩ R2
>0 = im

(
R>0 → R2

>0

t 7→ (t, k1
k2

t)

)

Theorem 2 (Conradi, I., Kahle). In the
space of total concentrations of a system with
positive toric steady states the multistationar-
ity locus is a cone with the origin removed.
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